
GEOS F436/636 Beyond 
the Mouse

Christine (Chris) Waigl
University of Alaska Fairbanks – Fall 2018 

Week 2: more on variables, matrices, vectors...



Topics for week 2
● Review / clean-up week 1 
● More data structures:

○ Vectors & matrices
○ Cell arrays
○ (looking ahead)Structs

● Binary operators 

2



Review & clean-up from week 1

3



Programming languages reminder
A programming language is an artificial language that is made up of a set of 
symbols (vocabulary) and grammatical rules (syntax) to instruct a machine.

4

Interpreter Compiler

Translates human-authored code to 
machine-executable code one statement at a 
time. Can be accelerated with a just-in-time 
(JIT) compiler. 

Translates human-authored code in a 
separate step as a whole. Faster.

Often comes with an interactive command 
line, also called REPL (read-eval-print loop). 

Generates intermediate code files which can 
be combined with specialized library files.

Continues translating until the first error is 
encountered. Then stops. 

Generates complex log files that make it 
harder to debug. 



Comments, and uncommenting
● Comments are pieces of text in your script (or the command line) that are not 

executed. 
● You can (you should!) use them to explain what you're doing for the benefit 

of your future self, or any collaborators. You can use them to annotate your 
code with, for examples, units of variables you are using. You can use them 
to add code samples that didn't work (but label them as "this didn't work"!). 

● A comment is everything that comes after the % sign. 
● Sometimes code samples come with commented lines that you are supposed 

to turn into code by removing the % sign. This is calle uncommenting.

5



Helpful hints when using the IDE
● Very useful keys: arrow-up (in the Command window: retrieves previously 

typed commands) and tab (completes what you have started typing)
● Any folder on your computer can be "added to the MATLAB path". This 

means that MATLAB will find the functions stored in them. 
● The ellipsis (dot-dot-dot: ...) is used to continue lines:

>> mystr = ["my text ", "is very very very very very ", ...
         "long"];

● Three useful commands:
○ clear all    ← removes variables, functions from your Workspace
○ clc             ← removes everything from your Command Line (but the history is stll there!)
○ close all    ← closes pop-up windows   

● Some people like to start each script with  "clear all; clc; close all".

6



Indenting. Pseudocode. 
Pseudocode is a notation that resembles a simplified programming language. You 
use pseudocode, often written by hand, to sketch out program design or work 
mentally through an algorithm (= a step-by-step method for solving a task).

Indenting (adding space at the beginning of line, often in sets of 4 spaces) is used 
to make your program structure more apparent. Some languages require indenting 
schemes (Python is very strict about them!), others, like MATLAB, are more lax. 
Imagine indents like the outline of a written piece. Pseudocode example:

IF viscosity_of_lava between 10ˆ3 and 10^4:
    lava_type = 'basaltic'
ELSE IF viscosity_of_lava < 10^8:
    lava_type = 'andesic'
ELSE:
    lava_type = 'rhyolite'

7



More on numeric variables
Computer memory can only store data in the form of binary data: smallest unit of 
data, which everything is build out of, is a bit: a single number that can be 0 or 1.

8

Integers. Imagine a 2x4 egg carton, where 
each position can be occupied (1) or not (0): 

                                               ← 5 eggs left

Each configuration corresponds to a (binary) 
number. 

Real numbers. This is much harder for real numbers. Computer memory is finite, so we can never 
represent a transcendental number like π precisely. Some computers use fixed-point 
representations like xxxx.xxxx (fixed number of places). But this makes it impossible to represent 
very small and very large numbers at the same time. Floating point: ± xxxx * 2^yyyy .

1 1 0 0

1 1 1 0

00000001 = 1, 000000010 = 2, 00000011 = 3 ...

How many are there? Answer: 2^8 = 256.

⇒ We can use this scheme to express either the 
numbers from 0 to 255 (unsigned integer) or from 
-128 to +127 (signed integer). int(8) or uint(8)



Matrices and vectors

9



The name "MATLAB" comes from "matrix laboratory"
Everything is already a matrix! (Simple numbers = 1x1 matrix.) 

>> a = [1, 2, 3, 4, 5]   ← row vector
>> b = [1 2 3 4 5]       ← also a row vector, also: 
>> c = [1; 2; 3; 4; 5]   ← column vector

Try:
>> a == b             ← remember, this tests for identity
>> b == c
>> a == c'             ← the apostrophe is the transpose operator 
>> a * a           
>> a * c              ← did you expect this? It's the dot product
>> a .* a             ← ... and this is the element-wise product

10



Vectors are just 1xn or nx1-dimensional matrices
● 1 x n   ← the first number is the # of rows, the second the # of columns
● n x 1   ← this is a column vector

Other ways to make a vector. Play around with these, change the numbers... 

>> 1:10
>> 1:2:10
>> linspace(0, 100, 1)      ← also try logspace(...)
>> 3 * 1:10
>> a = exp(1:10)
>> [a, 1, 2, 3]
>> [a'; 1; 3;]

11



Accessing the elements of a vector
1. Accessing them individually:

>> a = linspace(1, 10, 50)
>> a(17)
>> a(17:2:28)    ← this is sometimes called slicing

2. Accessing all of them in order

>> for element = a
  disp(a);  ← start this line with an indent
end  

12



simple plotting
>> xs = linspace(-10, 10, 101);

>> ys = -3 * xs.*xs + 10;

>> plot(xs, ys);

Remove semicolons (;) to take a look at the values.

>> grid;

>> title('My firsts plot!!!');

13



... and now matrices
We can build matrices out of vectors, or use functions that create matrices:

>> A = [[1, 2]; [3, 4]]
>> B = ones(4)
>> C = zeros(4, 2)
>> D = C'
>> E = magic(6)
>> F = rand(2, 4)
>> G = [F, D]
>> H = [F; D] 
>> A(1, 2)
>> F(1:2, 3:4)

14

Try:

● Element-wise multiplication with .*
● Element-wise addition, subtraction
● Apply matrix multiplication with *
● Do you need the . for addition/subtration?
● length and size functions

You will get many error messages! That's ok! 
Read them! 



Remember character arrays? 
>> my_name = 'chris waigl';
>> a_letter = 'a';
>> a_letter + 1       ← what do you expect? 
>> a_letter == 97       ← what do you expect? 
>> my_name + 1                      ← huh?

Characters are represented (encoded) via integers! And they are treated as such. 
(This is where the new MATLAB strings, available in v. 2016 and later, are useful. 
But we can concern ourselves with them later!).

Also remember the concatenation operator: [my_name, a_letter] 

15



What if I want to group data of different types? 
Cell arrays are similar to matrices, but allow you to mix data types. They are 
created with the {} operator. 
>> C = {'one', 'two', 'three'; ones(2), 2, 3} ← 2 x 3 cell array
>> C{2, 3}      ← individual element, use {}
>> C{2, 1}      ← ALSO an individual element, which is a matrix        
>> C(2, 1:2)    ← make a sub-array, use()

Structs (structure arrays) give you mixed data with labels. Super useful!
>> mydata.date = '2018-03-01';
>> mydata.unit = 'm/s';
>> mydata.description = 'measured velocity of UAV';
>> mydata.values = [2.4, 3.5, 4.6, 1.6, 2.9];
>> mydata

16



Relational operators

17



Operators are equivalent to functions. They're just 
written differently (= have a different syntax)

>> plus(3, 4)           ← the same as 3 + 4
>> isequal(vec1, vec2)   ← use this for vectors instead of == : it compares
                                                       the whole vector. More with doc is* 

18



Logical (Boolean) operators
Some  logical operations (try replacing "true" by "false", or 1, or 0):

>> b = 2 == 3          ← this is a false statement, so b evaluates to 0
>> b && true           ← logical AND: BOTH have to be true 
>> b || true           ← logical OR: ONLY ONE has to be true
>> xor(b, true)        ← exclusive OR: EXACTLY ONE has to be true
>> ~b                  ← logical negation ("not b") 

For vectors, use & (AND) and | (OR) for element-wise operation
>> [ 0 1 1 0 ] & [ 1 0 1 0 ] ← evaluates to [ 1 1 1 0 ] 

Try all of these by replacing b with ans. We will explore in the lab...

19



Don't forget to use "save your workspace".
You can save your workspace in a .mat file. And load it next time!

BRING YOUR OWN USB STICK. 

AND/OR FIND A NICE WORKSTATION TO RETURN TO 

20



Optional reading
● Hahn & Valentine ch.2 through 2.6, ch. 6.1, 6.2, 6.3. or Attaway, ch 1.4, 1.5, 

3.1, 5.2, 5.3
● If you're interested in how you can represent rational and real numbers in 

fixed and floating point representation (a fascinating topic that we don't have 
time to go into very deeply), this is a good, gentle introdution: 
http://www.science.smith.edu/dftwiki/index.php/CSC231_An_Introduction_to_
Fixed-_and_Floating-Point_Numbers 

21

http://www.science.smith.edu/dftwiki/index.php/CSC231_An_Introduction_to_Fixed-_and_Floating-Point_Numbers
http://www.science.smith.edu/dftwiki/index.php/CSC231_An_Introduction_to_Fixed-_and_Floating-Point_Numbers

