GEOS F436/636 Beyond

the Mouse

Christine (Chris) Waigl
University of Alaska Fairbanks — Fall 2018
Week 4. Control structures Il: iteration

Topics for week 4

e Control structures 2: iteration (= loops)
o while-end
o for-end

e (Maybe) consolidation from week 3:
o reading data from text files

o structures to store your scientific data: matrices/vectors, structs, cell arrays, map containers
o adifferent kind of conditional control structure: try-except

With week 4, we have covered a large amount of ground - enough to enable
you to write many useful programs ... if you practice!

Iteration with loops

The simplest loop

AS LONG AS the
condition remains
true, action 1
happens over and
over!

if
condition

false

action 1

The simplest loop (WHILE loop)

ANSWER: the
condition can be
changed in action
1! Or randomly!
Or with time!

while
condition

false

THINK QUESTION:
How can the
condition become
false when it was
true at first?

action 1

We can make a FOR loop out of a while loop

Some programming
languages have a
GOTO statement for
this "arrow back".
Never use it!

are there

generate a elements yes do something
sequence left in the with next m
(vector) sequence element

?

MATLAB looping syntax (see also live demo)

for n = 1:5
disp(n)
end

for v = [15 8 17]
if mod(v, 2) ==
continue
end
disp(v)
end

ii =1

while ii < 10
disp(ii);
ii = 11 + 1

end

while 1
tmp = rand;
if tmp > limit
break
end
S =S + tmp;
end

MATLAB looping notes

while loops are useful when you don't know how many times you want to
execute an iteration, but know the condition when to stop

while loops are also useful for the paradigm "start looping indefinitely, and
stop when a condition is reached". Infinite loops can be broken with CTRL-C

e Every for loop can be expressed as a while loop

e for loops are useful if you want to loop through a known vector,

e break ends loops prematurely

e continue jumps to next iteration

GOOD: BAD:

for element = vector N = length(vector):
do_something(element) for ii = 1:N

end do_something(vector(ii))

end

Loops can be nested (= loops inside loops)

For example, loop through the rows and columns of a matrix:

> A =1]123;432;111];

>> B = magic(3) — We defined two 3x3 matrices
>> for row = 1:size(A, 1)

>> for col = 1:size(A, 2)

>> C(row, col) = A(row, col) * B(row, col)

>> end

>> end

HOWEVER: In many cases you don't need to do this. Use vectorized operations
instead: They're shorter, easier to read, less error-prone, and faster. Here:

> C=A .*B «— element-wise multiplication

Control flow structures are
e conditional branching
e iteration (loops).

They appear in just about
any script or program.

HOW TO WRITE GOOD CODE:

BECOME A MASS
OF KLUDGES AND
SPAGHETTI CODE.

THROW IT ALLOOT |,
AND START OVER.

|GooD
[CODE |

source.

https://xkcd.com/844/

10

https://xkcd.com/1652/

What we can do with loops (advanced): Modeling
time series, for example: population dynamics.

LD
|
w50~ Hare — "
3 LAY e 3
g ynx
2 40
s
S
g
o 30+
5]
E
5 204
Z20
N S s s I T B B B B I

1910 1920 1930

https://ipmworld.umn.edu/radcliffe-population-ecology
Image source: NPS. Image source: NPS. 11

Hypothesis: The population of hares and lynx can be
explained by a predator-prey relationship.

Step 1: Design a mathematical model: The number of lynx (hares) at time step t+1
is the number of lynx (hares) at time step t minus the number of animals that died
plus number of the animals that were born. Lynx have a constant death rate, but
the death rate of hares is proportional to the number of lynx. Also, birth dates are
proportional to the availability of food.

H(t+1l) = H(t) + br * H(t) - a * H(t) * L(t)
L(t+1) = L(t) + c * H(t) * L(t) - df * L(t)

Often we have ¢ = a ("coupling factor") ,

12

STEP 2 and following: see live example in predprey_discrete.m

13

Reading data from text files

14

We have seen two ways of reading data column by

column from a delimited text file:

Read data from file (open/read/close file) into a cell array

>>
>>
>>
>>

OR
>>
>>

fileid = fopen('fname.txt"')
C = textscan(fileid, formatstring) <« cell array.

fclose(fileid)
[varl, ..., varN]

into a matrix

C{:};

M = dlmread('fname.txt"')

varl = M(:, 1);

— efc.

«— matrix. Doesn't need fopen

15

We can also read data or fread to read the

while loop and a test on

Ischar
fileid = fopen('fname.txt"') fileid = fopen('fname.txt"')
myline = fgetl(fid); fread(fileid);
while ischar(myline) fclose(fileid);
disp(myline)
myline = fgetl(fileid);
end Don't forget to close the file

fclose(fileid); identifier after use!
16

Try-except blocks for exception handling

17

A different conditional: try-catch-end

Sometimes we have the condition "if an error happens... do this".

This is very useful when avoiding to crash your program!

try
a = notaFunction(5,6);

catch
warning('Problem using function. Assigning a value of 0.');
a = 09;

end

18

This is particularly useful when opening files that
may not exist.

fileid = fopen('fname.txt');
try
mytext = fread(fileid);
catch
warning('File does not seem to exist. Skipping this.');
end
fclose(fileid)

19

We have encountered structs and cell arrays to store
mixed scientific data.

We can create structs directly with the . operator, or with the struct function:
>> data.temperature = [67, 68, 37, 45, 68, 79];
>> data = struct('temperature', [67, 68, 37, 45, 68, 79]);

See https://www.mathworks.com/help/matlab/matlab_prog/cell-vs-struct-arrays.html for many examples.

Yet another option are map containers:

>> data = containers.Map('temperature', [67, 68, 37, 45, 68, 79]);
>> data('temperature')

The general syntax is containers.Map(keySet, valueSet). .

https://www.mathworks.com/help/matlab/matlab_prog/cell-vs-struct-arrays.html

Optional reading

e Hahn & Valentine ch. 8.1, 8.2, 6.1 (review), or Attaway ch. 4, ch 5 (review

21

