
GEOS F436/636 Beyond
the Mouse

Christine (Chris) Waigl
University of Alaska Fairbanks – Fall 2018

Week 4: Control structures II: iteration

Topics for week 4
● Control structures 2: iteration (= loops)

○ while-end
○ for-end

● (Maybe) consolidation from week 3:
○ reading data from text files
○ structures to store your scientific data: matrices/vectors, structs, cell arrays, map containers
○ a different kind of conditional control structure: try-except

With week 4, we have covered a large amount of ground - enough to enable
you to write many useful programs ... if you practice!

2

Iteration with loops

3

The simplest loop

4

if
condition action 1start end

true

fa
ls

e

AS LONG AS the
condition remains
true, action 1
happens over and
over!

The simplest loop (WHILE loop)

5

while
condition action 1start end

true

fa
ls

e

ANSWER: the
condition can be
changed in action
1! Or randomly!
Or with time!

THINK QUESTION:
How can the
condition become
false when it was
true at first?

We can make a FOR loop out of a while loop

6

are there
elements
left in the
sequence

?

do something
with next
element

generate a
sequence
(vector)

end
yes

no

Some programming
languages have a
GOTO statement for
this "arrow back".
Never use it!

MATLAB looping syntax (see also live demo)
for n = 1:5
 disp(n)
end

for v = [1 5 8 17]
 if mod(v, 2) == 0
 continue
 end
 disp(v)
end

7

ii = 1
while ii < 10
 disp(ii);
 ii = ii + 1
end

while 1
 tmp = rand;
 if tmp > limit
 break
 end
 s = s + tmp;
end

MATLAB looping notes
● while loops are useful when you don't know how many times you want to

execute an iteration, but know the condition when to stop
● while loops are also useful for the paradigm "start looping indefinitely, and

stop when a condition is reached". Infinite loops can be broken with CTRL-C
● Every for loop can be expressed as a while loop
● for loops are useful if you want to loop through a known vector,
● break ends loops prematurely
● continue jumps to next iteration

8

GOOD:

for element = vector
 do_something(element)
end

BAD:

N = length(vector):
for ii = 1:N
 do_something(vector(ii))
end

Loops can be nested (= loops inside loops)
For example, loop through the rows and columns of a matrix:

>> A = [1 2 3; 4 3 2; 1 1 1];

>> B = magic(3) ← We defined two 3x3 matrices
>> for row = 1:size(A, 1)

>> for col = 1:size(A, 2)

>> C(row, col) = A(row, col) * B(row, col)

>> end

>> end

HOWEVER: In many cases you don't need to do this. Use vectorized operations
instead: They're shorter, easier to read, less error-prone, and faster. Here:

>> C = A .* B ← element-wise multiplication

9

10
source:
https://xkcd.com/844/

Control flow structures are
● conditional branching
● iteration (loops).

They appear in just about
any script or program.

https://xkcd.com/1652/

What we can do with loops (advanced): Modeling
time series, for example: population dynamics.

11Image source: NPS. Image source: NPS.
https://ipmworld.umn.edu/radcliffe-population-ecology

Hypothesis: The population of hares and lynx can be
explained by a predator-prey relationship.
Step 1: Design a mathematical model: The number of lynx (hares) at time step t+1
is the number of lynx (hares) at time step t minus the number of animals that died
plus number of the animals that were born. Lynx have a constant death rate, but
the death rate of hares is proportional to the number of lynx. Also, birth dates are
proportional to the availability of food.

H(t+1) = H(t) + br * H(t) - a * H(t) * L(t)

L(t+1) = L(t) + c * H(t) * L(t) - df * L(t)

Often we have c = a ("coupling factor") ,

12

STEP 2 and following: see live example in predprey_discrete.m

13

Reading data from text files

14

We have seen two ways of reading data column by
column from a delimited text file:
Read data from file (open/read/close file) into a cell array

>> fileid = fopen('fname.txt')

>> C = textscan(fileid, formatstring) ← cell array.

>> fclose(fileid)

>> [var1, ..., varN] = C{:};

OR into a matrix

>> M = dlmread('fname.txt') ← matrix. Doesn't need fopen

>> var1 = M(:, 1); ← etc.
15

We can also read data
line by line using fgetl, a
while loop and a test on
ischar

fileid = fopen('fname.txt')

myline = fgetl(fid);

while ischar(myline)

 disp(myline)

 myline = fgetl(fileid);

end

fclose(fileid);
16

.... or fread to read the
whole file in one go:

fileid = fopen('fname.txt')

fread(fileid);

fclose(fileid);

Don't forget to close the file
identifier after use!

Try-except blocks for exception handling

17

A different conditional: try-catch-end
Sometimes we have the condition "if an error happens... do this".

This is very useful when avoiding to crash your program!

try
 a = notaFunction(5,6);
catch
 warning('Problem using function. Assigning a value of 0.');
 a = 0;
end

18

This is particularly useful when opening files that
may not exist.

fileid = fopen('fname.txt');
try
 mytext = fread(fileid);
catch
 warning('File does not seem to exist. Skipping this.');
end
fclose(fileid)

19

We have encountered structs and cell arrays to store
mixed scientific data.

We can create structs directly with the . operator, or with the struct function:
>> data.temperature = [67, 68, 37, 45, 68, 79];

>> data = struct('temperature', [67, 68, 37, 45, 68, 79]);

See https://www.mathworks.com/help/matlab/matlab_prog/cell-vs-struct-arrays.html for many examples.

20

Yet another option are map containers:
>> data = containers.Map('temperature', [67, 68, 37, 45, 68, 79]);

>> data('temperature')

The general syntax is containers.Map(keySet, valueSet).

https://www.mathworks.com/help/matlab/matlab_prog/cell-vs-struct-arrays.html

Optional reading
● Hahn & Valentine ch. 8.1, 8.2, 6.1 (review), or Attaway ch. 4, ch 5 (review

21

