
Lab 09 - Exploring the Unix/Linux command line

This lab looks long, but it the actual questions don't take up a lot of space (or time!). The main
goal is to get you to practice on the Unix command line. Please read the whole thing and follow
every single instruction. You'll need the knowledge for next week!

Prerequisites: Having created your virtual Linux environment. See the instruction sheet.

0. Start your environment
Start VirtualBox, launch your virtual Linux machine and log into your account.

(Take a moment to explore your Graphical User Interface (GUI). For example, launch a Firefox
browser and visit a website. More programs can be accessed with the nine-dot square icon in
the lower left. Launch the Sudoku or Mines application, play a quick game, and close it again.
The Ubuntu Software application allows you to install a whole lot of free software. Go ahead!
But be careful, we didn't give our virtual Linux computer a lot of space.)

Find the Terminal application and open it. (Tip: You can right-click on the Terminal icon and
select "add to favorites". Then it will appear in your applications shortcut panel on the left.)

In your Linux GUI, each window has three icons in the top-right, like on Windows: for minimizing,
maximizing and closing the window. Maximize the terminal application so that your shell
window occupies the maximum space. Then using either File>New Tab or SHIFT-CTRL-T add
another tab (or two). You can have as many shell windows in parallel as you want!

How you should hand in the solutions to this lab: From within your virtual machine, launch
either the application "Text Editor" using the GUI icon, or type "gedit &" from a terminal window.
This launches a nice, simple text editor. (gedit is the name of the program, and the & is to make
it so that it doesn't block the command line while it is running. Don't worry too much about this
point!) You can just type plain text, or if you like, use the Markdown codes like in GitHub .md
files, see https://guides.github.com/features/mastering-markdown/ . Save the file as
BtM2018_Lab09_yourname.txt (or .md) on the Desktop (inside the virtual machine!). Create the
file now, before you even get started, and at the end use Firefox to log into your email account to
mail it to Andrew (or, at first, yourself).

1. Explore simple commands
We'll use the cal command as an example for how to explore a simple, useful command. You
can just type "cal" at the command prompt. Can you guess what it does?

1

https://guides.github.com/features/mastering-markdown/

For more information, type "man cal" and read the beginning of the manual page.

Under Synopsis, you'll find the first example of how to use cal:

So let's explore these options! They can be used individually or in combination Type in one by
one, and figure out what the output means. The man page can help. (Tip: Keep the man page
open in one tab of the Terminal, and type your commands in another tab. To quit the man page,
type q.)

$ cal -3

$ cal -1

$ cal -j

$ cal -y

$ cal -3j

$ cal -A 2

$ cal -A 2 -B 3

$ cal 7

$ cal -3 7

$ cal -d 2017-2

$ cal 5 2017

$ cal 2016

If you don't understand every single one of these, ask for help! First check man cal, then ask
your fellow students, then ask your instructors.

Question section:

1.1 What weekday was Halloween (Oct 31) in 2015?
1.2 Type "cal -3 9 1752" . Is there anything that looks odd? Describe.
1.3 A similarly useful command is date. Type it and provide the output.

(If you're interested in the "why" of your observation in 2.2, you can read up on the history in
http://mentalfloss.com/article/51370/why-our-calendars-skipped-11-days-1752).

2

http://mentalfloss.com/article/51370/why-our-calendars-skipped-11-days-1752

2. Practice moving around the file system tree
Carry out the following actions one by one. You'll need the slides from the lecture, or any of the
two reference cards.

● Go back to your home directory using "cd" (or "cd ~" or "cd $HOME" -- they all do the
same thing).

● Create a directory called dir1 using mkdir ("mkdir dir1").
● Create a directory called dir2 using mkdir.
● Use cd to change into dir1 (cd dir1) and back up to your home directory (cd ..) . do

this a few times.
● Change directly to the directory /usr using cd . NOTE: "cd /usr" is a change to an

absolute directory path: the directory called "usr" under the root directory ("/"). "cd dir1"
is a change to a relative directory path: the directory "dir1" under whatever directory you
happen to be in. Try "cd dir1" after "cd /usr" -- you will get an error message!

● Change back to your home directory.
● List all the files and directories in it, using ls. (Try also ls -a, ls -l, ls -la.)
● Change into dir1. Then type "cd ../dir2". Use pwd to find out what directory you're in.

Question section:

2.1 At the end of this sequence, what is the (full) path of the directory you are in?
2.2 In the directory /usr, how many subdirectories are contained in it? How many files (directly
in it, not inside subdirectories)?

3. Get information about your environment
In this section you will try out a few more commands we have not yet seen in class. Use the
FOSSwire Unix/Linux command reference page, and/or your (updated) slides for reference.

● uname provides information about the operating system. Try "man uname" and then call
the command using the options -s -n -m -r (one by one!) and the most commonly used
option, -a ("all") .

● The commands hostname, whoami, uptime are quite self-explanatory.
● du ("disk usage") shows how much space is consumed by all subdirectories under a

directory. We usually use it with two options: -h "human readable" for a more friendly
display of the directory size, and a long option to restrict how "deep" the command digs
down into a directory: --max-depth. For example in your home directory, try du, du -h,
du --max-depth 1 and du -h --max-depth 1.

● top provides a self-updating display of all currently running processes and the resources
they consume. There's a lot of information there - just try to understand some basics,
such as user, command name, CPU % and MEM(ory) % . (For your information, Gnome is

3

the name of the graphical user interface that comes with Ubuntu Linux. Graphical user
interfaces tend to use a lot of memory!)

● ps lists all active processes and has a lot of options. Try ps -a. Find the process ID in
the first column and the command in the last column. On my computer, the output looks
somewhat like this:

This is after I have started, in a different tab, an infinite process using the yes
command, which indefinitely outputs a string (try "yes ARRRRGH!", which you will have to
stop typing CTRL-C.)

● You can use the output of ps -a to kill processes. For example, I could kill the yes
process in different ways:

○ killall yes ← the argument is the command name
○ kill 1905 ← the argument is the process ID
○ kill -9 1905 ← kill has an option: the killing strength. 9 is strongest.

(Some processes are hard to kill and need kill -9. You may have noticed there are a
lot of jokes in Unix land...)

Question section:

3.1 Using top, find out which process is currently using the most memory. Provide the name of
command and user who owns it.
3.2 Provide the output of uname -a, hostname, whoami, and uptime.
3.3 For this question, you'll need two Terminal tabs. In one tab, type "yes ARGH!" (the yes
command creates an infinite loop by indefinitely repeating some text to the command line). In
the second tab, type ps -a. Find the process ID that goes with the yes command. Then kill
that process. Provide the exact command, and what is written in the second tab after the ARGH!
once the process is killed.

4. Getting information about files, and more practice with
wildcards, redirection and pipes
For this lab, we will simply use the files we already have and can easily create. One file that all
of you have in your home directory is called .bashrc . It is a hidden file, starting with a dot. It
contains configuration options for your bash environment. Let's make a copy of it, and name it
mybashrc: cp .bashrc mybashrc.

4

● To output the contents of mybashrc to the command line, use cat mybashrc
● To append the contents of .bashrc to the end of mybashrc, use a redirection: cat

.bashrc >> mybashrc

● To read the contents of mybashrc page by page, use more mybashrc, or less
mybashrc . Type q to get out of the pager. (more used to be an older version of the
programm, and less is the newer version, but on your Linux system the two actually do
the same thing.)

● To count the number of words in mybashrc, you pipe the contents of the file through the
command wc -w. For the number of lines, it is wc -l: cat mybashrc | wc -l.

● Do this only after you've answered the questions below: 1. Practice renaming a file,
using mv ("move"): mv mybashrc myoldbashrc. 2. Check with ls that mybashrc isn't
there any more. Instead you have myoldbashrc. 3. Delete your myoldbashrc test file
using the rm command. Be careful not to delete .bashrc!

Question section:

4.1 Compare the number of lines in mybashrc with the number of lines in .bashrc (run cat
filename | wc -l for each of the files.) Why is one a multiple of the other?
4.2 What is the last line in mybashrc?
4.3 How would you append a line that says "This is the end of the file"? (Tip: remember the echo
command, and redirection.)

5

