
GEOS F436/636 Beyond
the Mouse

Christine (Chris) Waigl
University of Alaska Fairbanks – Fall 2018

Week 7: MATLAB plots, figures and maps 1 & 2

Topics for week 7
● Reminders from last week
● Understanding the basic components of a plot/figure
● 2D and 3D plots; plotting data vs. plotting functions
● Multiple plots in one figure
● Visualizing rasters (matrices) and maps ← requires Mapping Toolbox
● Finishing up MATLAB topics:

○ Strings vs. character arrays
○ basics of dealing with date and time

2

Reminders from last week: accessing data
● MATLAB offers a number of built-in functions to access data stored in files:

○ fgetl to read text files line by line, dlmread or csvread (with corresponding
dlmwrite/csvwrite) to read numerical tabular data into a matrix, textscan to read tabular
data that may contain strings into a cell array. (Use fprintf for writing data line-by-line.)

○ For binary file formats functions exists as well: xlsread/xlswrite, h5read/hdf5write...

● Reading data from a URL with webread is similar to reading from a file
● Make sure to read the documentation on the functions / commands you are

using and understand the examples. What are the arguments of the function
(ie, what variables do you have to pass into the function to make it work?) It
takes time and practice!

If you want to have data to play around with, you can load the sea ice climatology data for this week:
[doy, avg_extent, std, perc10, perc25, perc50, perc75, perc90] = loadseaicedata();

3

Project organization and planning are key!
● The basic workflow is usually:

● Think of these steps before you start fiddling with the data and create a
directory layout. Don't forget that storing your code in GitHub will help
managing changes. (But add large data files to your .gitignore file.

4

access
data store
(eg. file,
database,
web site)

clean up /
transform
data (eg
cell array /
string or
number)

save the
cleaned
input data
to file

process
data
(analyze,
plot...)

save output
data and
plots

Making plots and figures is an integral part of data
analysis and processing
The function of plots is visual communication.
(We will come back to this point.)

In MATLAB, 2D-plotting is a simple process:
1. generate x-data
2. generate y-data
3. plot
4. (... add visual improvements ...)

>> x = 0:pi/100:2*pi;
>> y = sin(x);
>> plot(x, y); 5

There are functions other than plot to achieve
various types of plots. Try some of these:

>> x = 0:pi/10:2*pi; ← vary the number of x-values!
>> y = sin(x)+0.1*rand(1,length(x)); ← what does the second term do?
>> plot(x, y);
>> stem(x, y);
>> bar(x, y);

What is the difference between
plotting data and plotting a function?

6

Also, try some other plots:

>> x = 0:0.2:10;
>> y1 = x.*x;
>> hist(x, y1);
>> semilogy(x, y1);
>> semilogx(x, y1);
>> loglog(x, y1);ANS = There really is none: You plot a function by

generating x-values, applying the function to get
y-values, and then plotting the data

Plotting 3D-data comes in two cases: line plots in
3D-space, and plots over a 2D-surface
3D line plots are parameterized curves:
>> t = 0:pi/100:5*pi;
>> x = sin(t); >> y = cos(t);
>> plot3(x, y, t);

7

Surface plots have a 2D-domain and a
1-D value space. We generate the
input domain using the meshgrid
function.

>> x = linspace(1,10); y = x;
>> [X, Y] = meshgrid(x, y);
>> Z = sin(X) + cos(Y);
>> surf(X, Y, Z);
>> contour(X, Y, Z);
>> mesh(X, Y, Z);

Changing the appearance of a plot
Line style, marker style and color are changed by passing a third "LineSpec"
argument to the plot function. Look at doc plot for all options!

>> x = 0:pi/10:2*pi; y = sin(x) + 0.1*rand(1, length(x));
>> plot(x, y, 'rx');
>> plot(x, y, 'bo');
>> plot(x, y, 'g-x');

You can plot several lines into the same plot ("axes object") by saying "hold on":

>> hold on Don't forget to switch hold off again.
>> plot(x, y, 'rx');

8

More appearance attributes are changed by adding
key-value attribute pairs
plot(x,y,'ro--',...
'MarkerIndices',1:3:length(y), ...
'MarkerFaceColor', [0.5, 0.5, 1], ...
'MarkerEdgeColor', 'g', ...
'MarkerSize', 20);

Also add:
title('...'), xlabel('...'),
ylabel('...'), grid
text(xpos, ypos, 'some_string');
text(xpos, ypos, sprintf('Station: %s', stations{num})); 9

For more advanced changes, you'll need the gca
object. gca stands for "get current axes"

For example: change the x- and y-limits (show only part of the data)

>> set(gca, 'XLim', [xmin xmax]); ← x-axis only
>> set(gca, 'YLim', [ymin ymax]); ← y-axis only
>> set(gca, 'XLim', [xmin xmax], 'YLim', [ymin ymax]); ← both axes

>> get(gca, 'XTick')

>> set(gca, 'XTick', 1:3:15)

>> set(gca, 'XTickLabel', {50, 'Fred', 'Tuesday', 75.5, 999})

10

Plotting multiple "things": The MATLAB graphics
object hierarchy:

11

The figure object
To create a new figure with no axes: >> figure;

To highlight a figure that is already displayed (if it doesn’t already exist, it will be
created): >> figure(2)

To get a particular property associated with a figure:
>> get(figure(1), ‘Position’)

[420 528 560 420]

To modify a particular property associated with a figure:
>> set(figure(1), ‘Position’, [100 100 560 420])

This particular example will just move where figure(1) is plotted on the screen.
gcf is a ‘handle’ for the current active figure window:
>> figureposition = get(gcf, ‘Position’)

12

The axes object
New figures are created without a set of axes. To get a ‘handle’ for the current
active set of axes use gca (get current axes). Example: get a list of all properties
associated with current axes: >> get(gca) >> get(gca, ‘position’)
This will return the screen position of the current active figure window, which by
default is: [0.13 0.11 0.775 0.815] (The Format here is [xorigin yorigin xwidth
yheight] in fractions of the figure window width.)
To modify the position of the current axes within a figure:
>> set(gca, 'position', [0.2 0.3 0.6 0.4])
The axes would start 20% of the way across the screen, 30% of the way up, and
be 60% the screen width, and 40% the screen height.

13

Subplots (= several plots in one figure)
Subplots means: One figure contains multiple sets of axes.

figure(2) subplot(2,1,2)

ax1 = subplot(2,1,1); y2 = sin(2*x);

x = linspace(0,10); plot(x,y2)

y1 = sin(x); title('Subplot 2: sin(2x)')

plot(x,y1)

title('Subplot 1: sin(x)')

subplot(n, m, k) ← subplot number k in an n by m grid. Count goes rows first.

14

More on axes
You can use the axes command: >> axes('position', [0.2 0.3 0.6 0.4]);
MATLAB default plot properties (appearance) is fine for the screen, but the
features are too small for presentations and publications. You will have to adjust
these features. For example:

set(gca,'FontName','Corbel','FontSize',12,'FontWeight','Bold', 'LineWidth',2); ← if
I haven't given a name to the current axes, I use "gca"
set(ax1,'FontName','Calibri','FontSize',12,'FontWeight','Bold', 'LineWidth',4); ←

if I know the name of the current axes ("ax1")

The legend command adds descriptive labels to each plotted data series (in order
of plotting), either to the current axes or specific axes:
legend('label1', 'label2', ...) or legend(ax1, {'label1', 'label2', ...}

15

Visualizing raster data (images)
This is similar to 3D plotting: The domain of the data to be plotted is an x/y plane,
and the colors represent z-values. The data can be imagined as a matrix, or, for
RGB-images, three stacked matrices (n by m by 3). Example, in steps (note: eye
is the identity matrix with 1 on the diagonal and 0 otherwise. repmat repeats a
matrix):

>> A = repmat(eye(4), 3) + repmat(eye(2), 6);
>> imagesc(A) ← display an image, with a scaled colormap
>> colormap default equivalent to: image(A, 'CDataMapping','scaled')
>> axis equal
>> axis tight
>> axis off

16

... and these look like:

17

The order of commands is
important!

If you use:
axis off

You don't need :
axis tight

Carefully select a color map: Ideally, the brightness value should rise or fall from
one end to the other. The old default "jet" is visually more confusing than the new
default "parula". "hot" can be used for thermal images. Categorical maps like
"lines" will make your data non-continuous: use only when appropriate.

18

The code to generate the previous plot illustrate creating sub-plots in a loop.

colormapnames = {'parula', 'jet', 'hot', 'cool', 'copper', 'lines' };

x = linspace(1,10); y = x;

[X, Y] = meshgrid(x, y);

Z = sin(X) + cos(Y) + 5;

figure(7)

for ii=1:length(colormapnames)

 subplot(2, 3, ii)

 plot1 = surf(X, Y, Z);

 set(plot1,'linestyle','none')

 hold on

 imagesc(x, y, Z)

 colormap(gca, colormapnames{ii})

 axis tight

 title(['Colormap: ' colormapnames{ii}])

end
19

Saving plots to a file
Two options: print() and saveas().

>> saveas(figure(2), 'fig2.png') ← doc saveas for formats

>> print -f1 -dpng myplotfilename.png ← script form
>> print('-f1', '-dpng', '-r200', 'f1.png') ← functional form

For example in a loop:
for ii = 1:Nplots

 print('-depsc2', sprintf('-f%d',ii), '-r70', sprintf('f%d.eps',ii));

end

20

Making maps in MATLAB
Maps are a special case of raster plot. They are a form of 3D plot: A color value is
plotted over an X/Y grid. The task is made more difficult by the need to deal with
(flat) coordinate systems to represent a section of the (ellipsoid) earth.

You need the Mapping
Toolbox installed. Get started
by typing

>> mapdemos

21

What makes maps much harder than other raster plots is the need
to project the curved earth surface on a flat plane.

● A projection maps a point on the curved surface onto the plane. A datum is
the model of the earth surface used (sphere, ellipsoid, geoid...)

● Use projlist to find out which projections your version of MATLAB offers.
● Use the geographically informed functions axesm and surfm (etc.) to generate

geographically informed figures.
● However, you'll need lat/lon coordinates of every pixel in your data. If your

data comes in a GeoTIFF file, for example, use geotiffread to access the data
and geotiffinfo to extract information about the file's projection and other data
properties.

22

https://www.mathworks.com/help/map/ref/axesm.html
https://www.mathworks.com/help/map/ref/surfm.html
https://www.mathworks.com/help/map/ref/geotiffread.html
https://www.mathworks.com/help/map/ref/geotiffinfo.html

Strings vs. character arrays
Strings were introduced to MATLAB in 2016. They improve handling of text data
>> mychararray = 'A horse! A horse! My kingdom for a horse!';
>> mystr = "A horse! A horse! My kingdom for a horse!";

Character arrays are simply numerical arrays of the character codes of the letters.
Character arrays sometimes have unexpected behavior:
>> mychararray + 1 ← [66 33 105 112 115 116 102 34 ...]
>> mystr + 1 ← "A horse! A horse! My kingdom for a horse!1"
>> length(mychararray) ← 41
>> length(mystr) ← 1

String functions are used to find, replace, edit, manipulate or test strings. See
https://www.mathworks.com/help/matlab/characters-and-strings.html . For ex.
>> strrep(mystr, '!', '!!!') replaces every exclamation mark by three exclamation marks
(Works for both strings and character arrays.)

23

https://www.mathworks.com/help/matlab/characters-and-strings.html

The basics of dealing with dates and times for
arithmetic and time series plot labeling
● datetime creates an object that represents a point in time.
● The difference of two datetimes is a duration. You can add and subtract durations to and from

each other and to and from datetimes: datetime('now') - datetime(2018,7,1,14,2,22)
= time elapsed since 2018-07-01 14:02:22 in H:M:S .

● Useful alternative formats for points in time are datenum (for printing and plot labeling) and
datevec (for data storage). datestr makes a formated string.
datevec(datetime(2018,7,1,14,2,22)) ← [2018 7 1 14 2 22]
datenum(datetime(2018,7,1,14,2,22)) ← 737242.5849768518
datestr(737242.5849768518) ← '01-Jul-2018 14:02:22'

● To transform a day-of-year (from 1 to 366) into a datestr and datenum using a dummy year,
generate the plot, then use datetick to apply the datetimes to the x-axis labels.

○ dates = datestr(datenum(2016, 0, doy))
○ plot(dates, ...)
○ datetick

24

https://www.mathworks.com/help/matlab/ref/datetime.html
https://www.mathworks.com/help/matlab/ref/duration.html
https://www.mathworks.com/help/matlab/ref/datenum.html
https://www.mathworks.com/help/matlab/ref/datevec.html
https://www.mathworks.com/help/matlab/ref/datestr.html
https://www.mathworks.com/help/matlab/ref/datetick.html
https://www.mathworks.com/help/matlab/ref/datetick.html

