
GEOS F436/636 Beyond
the Mouse

Christine (Chris) Waigl
University of Alaska Fairbanks – Fall 2018

Week 9: The Unix command line 1

Topics for week 9
● (Note: Week 8 was two lab sessions, with labs 7 and 8.)
● What is an operating system (OS)? What is Unix/a Unix-like OS and why

would we want to use it?
● *ix history and philosophy
● Get your own virtual Linux computer!
● Elementary Unix/Linux command line.

2

An operating system (OS) is the software that
manages a computer's hardware and software
resources for the user and application programs.

Thinking questions (take 1-2 min, discuss with
your neighbor):

1. Name as many OS as you can.
2. Can you name things that you're not sure

whether they are an operating system?

3
source: Wikipedia

Results from question on previous slide
Things that are OSs:
● For desktops/servers : Linux, Unix, Windows (different versions, too -- some

just updates of others, some quite different), MacOS, MS-DOS
● For phones and handheld computers: Android (a kind of Linux), Apple iOS,

Blackberry
● For network switches and routers: CISCO IOS for example

Things that aren't OSs:
● "Microsoft" -- is a company that makes OSs and other software
● "Oracle" -- is also a company, but more importantly a database management

system. They are in some ways similar to OSs (infrastructure that the user
doesn't directly use), but don't manage computing hardware/resources

4

Frequently found functions of an OS
All the parts in color on the left (source: drexel.edu) can be
considered part of the OS:

● The kernel is the most central part. It is loaded first at
start-up and manages memory and processes.

● The kernel loads device drivers to interact with the
hardware

● A library of system and a set of system utility programs
calls may be available to applications to exchange data
and commands with the system.

● A shell (command line) or a GUI offers the user an
interface to interact with the system.

5

There are many different specialized OS
● For real-time systems, embedded systems, workstations, mobile systems...
● Early computers were specialized calculating machines. As hardware

capabilities increased, computers were designed with management software
to "supervise" the execution of programs and the access to resources.

● But even with mainframes (into the 1970s and beyond), computing meant
basically a) load a program from magnetic tapes or plates and b) execute the
program. ⇒ Batch mode

● In parallel, time-sharing OS allowed several processes, and later users, to be
allocated small slivers of resources (nearly) simultaneously.

● Unix, which started in the 1970s at Bell Labs as a project by Brian Kernighan
and Rob Pike became a very successful time-sharing multi-user OS.

6

Why would you like to use Unix/*ix ?
● Use (nearly) any large modeling

system (WRF, climate model, tsunami
model, ice sheet modeling...)

● High-performance computing for
science (NCAR, Chinook
supercomputer)

● GNU/Linux offers a free, collaboratively
developed computing environment that
you can use as your primary machine!

● Embedded systems with Raspberry Pi
(free small computers running
GNU/Linux) for research, sensors,
robotics, autonomous cameras....

7

A very very simplified history of Unix
The researchers at Bell Labs defined
"what Unix is", and many others
implemented versions of it.

● orange: open-source
● dark blue: proprietary/commercial
● turquoise: the GNU/Linux system

(GNU system utilities + Linux kernel
written by Linus Torvalds and
collaborators)

8source: Wikipedia

We will now create and install our very own Linux system in a virtual
machine on your Windows computer. (See stand-alone instructions.)

The end result looks like the image on the left.

The user interacts with the computer via a GUI
(like in Windows) or via a very powerful
command line interpreter called a shell.

Command prompt:
chris@BtM-Virtualbox:~$

user@computer:path$ ← Command
prompt pattern. The user can decide what this
should look like. (We will see how next week.)

9

The famous "Unix philosophy":
Provide tools that do one thing and do it well.
You can read more about it on Wikipedia https://en.wikipedia.org/wiki/Unix_philosophy or in
the (still excellent) 1984 book The Unix Programming Environment by Kernighan
and Pike:

Even though the UNIX system introduces a number of innovative programs and techniques, no
single program or idea makes it work well. Instead, what makes it effective is the approach to
programming, a philosophy of using the computer. Although that philosophy can't be written down in
a single sentence, at its heart is the idea that the power of a system comes more from the
relationships among programs than from the programs themselves. Many UNIX programs do quite
trivial things in isolation, but, combined with other programs, become general and useful
tools.

10

https://en.wikipedia.org/wiki/Unix_philosophy

Unix-like systems organize files in a hierarchical tree

Each directory has a
path. Home directory
(where you log into):

/Users/chris OS X

/home/chris Linux

The home directory is
called $HOME or ~ .

11

The Unix shell
● The command line interpreter we interact with is called a shell
● There have been many shells developed for Unix systems over the years.

The original shell called sh ("Bourne shell") is still available on most systems.
● We will use the default shell that comes with Ubuntu GNU/Linux: bash

("Bourne Again SHell" ← Attention, JOKE!!)
● A shell is really just another program, like all Unix tools! We can easily change

it. Try typing tcsh at the command prompt. (Get out of tcsh with CTRL-D.)
● The shell is like a REPL (read-execute-print-loop) in MATLAB. It prints to

standard output and reads from standard input

12

Unix commands 1: Moving around the tree
$ pwd ← "print working directory" (ie the directory where you
 currently are: "Where am I???")
$ cd .. ← "change directory" (.. = one up)
$ cd / ← go all the way up to the root directory (absolute path)
$ cd ~ (or simply: cd) ← go to your home directory

$ cd $HOME ← same thing
$ mkdir newdir ← make a new directory called newdir inside your current
dir.
$ cd newdir ← go into your new directory (relative path: one down)
$ cd ./newdir ← same thing: . is the current directory
$ cd ../otherdir ← go one up, and then down into otherdir (if exists)
$ cd /usr/bin ← go to an absolute path /usr/bin 13

Unix commands 2: Commands can have options and
arguments (eg. list directories (ls), print (echo))
Anatomy of a command:

$ ls -la command-line options. short for -l (long format)

 -a (show all files, including hidden files)

 command long options (more than 1 letter) start with --

 (end of) command prompt

 (you don't have to type this)

$ echo hello world argument

$ man command ← get "manual page" of command 14

You create a hidden
file or directory by
starting the file name
with a dot. For
example: .bashrc in
your home directory.

Unix interlude 1: Users
● You created a username and a password for yourself during installation
● You can have as many users as you like! See the useradd command.
● Users are members of groups. This is to manage sets of permissions that

apply to a whole range of users. Groups are useful for example if you want to
give all members of your research team access to some data or resources.
We won't talk more about them than necessary. You can type groups to find
out which groups your user is part of.

● root is a special user, also called the superuser, with total control.For tasks
that require root privileges (for example, install software), you can either
"become" the root (but this is disabled by default on Ubuntu Linux), or use the
sudo command ("do as supersuer", pronounced "soodoo".)

15

Unix interlude 2: File and directory permissions
When you use the long form of ls to list all files and directories in a directory, you'll
see something like this:

d: directory
rwxrwxrwx: read/write/execute
 permissions for
 user (owner), group,
 and everyone else
chris chris: owner user and group
+ id, file size, time stamp, file/directory name.

(Here, directories are displayed in blue) (Do not worry at this stage about the
"group" thing. The important bit is that permissions to read, write and execute a file
can be set individually.
"Execute" means "run" if it is a program, "access" if it is a directory. 16

Examples for permissions

17

Changing permissions:
chmod a+rwx [file_name]

Octal notation for each
of the three symbols:
chmod 777 [file_name]

Unix commands 3: Manipulating files
$ cp file1 file2 ← "copy" (make a duplicate of file1 named file2)
$ mv file1 file2 ← "move" (= rename) (cp and mv work across directories!)
$ mv file1 dir1/ ← move file1 into directory dir1
$ rm file1 ← "remove" (delete forever, without hesitation!)
$ rm -r dir1 ← delete dir1 and everything in it (recursively)
$ touch file1 ← create empty file1. if exists: reset timestamp
$ cat file1 ← print the contents of file1 to standard output
$ more file1 (or: less file1) ← print the contents of file1 page by page
$ wc file1 ← print number of lines, words, bytes in file1
$ wc -l file1 (or: wc --lines file1) ← print number of lines
$ chmod o+rw [file] ← "change mode" give "others" read/write permission
$ tail (or: head) file1 ← show last (or: first) lines of file1 18

Unix commands 4: Input/output, redirection & pipes
$ echo hello world ← print the argument ("hello world") to standard out(put)
$ cat file1 > file2 ← redirect contents of file1 into file2 (overwrites)
$ cat file1 >> file2 ← append contents of file2 at the end of file2
$ echo This is the last line >> file1 ← appends last line to end
$ echo There are five words here | wc -w ← pipes the output of the echo
 command ("There are five words here" into the command wc -w, which
 counts the words. The result is the number of words: 5.)
$ cat file1 | wc -l ← counts the lines in file1
$ ls -l > listing.txt ← create a file listing.txt that contains the directory
listing
$ ls -l | wc -l ← counts the number of files & directories (lines in a
long
 directory listing)

19

Unix commands 5: Information about your system
Unix has many commands that tell you about your system. Most of them have
many options due to the fact that Unix is much used in complex large systems, so
it is designed to be easy to use for system administrators (sysadmins).

$ uname -a ← OS information
$ hostname ← your computer's name
$ uptime ← how long your computer has been running ("up")
$ whoami ← your user. Also try w and who
$ top ← show all running processes and their resource usage
$ ps ← information about processes in particular command and process ID
(PID)
$ kill pid ← kill (stop) the process with the id pid kill -9 kills harder
$ killall command ← kill all processes that start with the command "command" 20

Unix interlude 3: Keyboard shortcuts, wildcards etc.
If you launched a process and need to get back to your shell prompt, and in other
situations, there are a number of keyboard shortcuts that can help.

CTRL-C (hold CTRL and C keys simultaneously) abort command execution
CTRL-D send "end-of-file" message: ends shell, ends other REPLs
q quit, gets you out of more, less and man pages
$command & sends the command execution to the background,
CTRL-Z followed by bg: halt command, then send it to the background
fg return the last command sent to the bg back to the foreground
* matches an arbitrary text. Eg: *.txt = all files ending in .txt
? matches one character. Eg: file?.txt matches file1.txt,
 file2.txt, filea.txt, fileb.txt ...

21

